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It follows that
det(y' (1), " (@), y (1)) = —(' 1))’ - det(y'(x (1)), ¥"(x (1)), ¥ (x())).

Since both determinants are strictly positive, 7'(¢) < 0, i.e., T is a strictly decreas-
ing C2-diffeomorphism of R. Thus 7 has a fixed point, i.e., there is ¢ in R such that
7(¢t) =t.Butthen —y (t) = 6(t) = y(z(¢)) = y (¢), which is a contradiction. |
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A Tile with Surround Number 2
Casey Mann

Consider the standard tiling of the Euclidean plane by unit squares: you see that sur-
rounding any one square are eight squares. A different arrangement of unit squares can
be found in which a square is completely surrounded by six squares. Similarly, a unit
equilateral triangle can be completely surrounded by six unit equilateral triangles. A
rectangle that is not a square can be completely surrounded by four copies of itself.
In Figure 1 we show these examples. In [1], Friedman produced an example of a fig-
ure that can be completely surrounded by three copies of itself. An example based on
Friedman’s figure is given in Figure 2.

N N

Figure 1. Basic examples.

This raises a natural question: Is there a figure that can be completely surrounded
by just two copies of itself? We will show that the answer is yes. Moreover, we will go
on to show that for each positive integer n there exists a figure such that n copies of
this figure can be completely surrounded by only two copies of the figure.

First, we recall a few definitions. By tile we mean any figure in the Euclidean plane
that is a closed topological disk. This includes polygonal figures and curvilinear fig-
ures such as lunes, but excludes figures with holes, figures with fractal boundaries,
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Figure 2. A figure surrounded by three copies of itself.

unbounded figures, and other bizarre shapes. Let T be a tile. A finite collection of
copies of T is said to surround T if the interiors of the tiles in this collection along
with T are pairwise disjoint and if their union contains all points within some fixed
positive distance from 7. For example, in Figures 1 and 2, each darkened shape is sur-
rounded by the outer shapes, but in Figure 3 the darkened shapes are not surrounded.
The minimum number of copies of T needed to surround 7 is called the surround
number of T. In this language, we will present a tile with surround number 2.

Figure 3. Shapes that are not surrounded.

The example we present here is based on the Voderberg tile [6], discovered in 1936
(Figure 4). The Voderberg tile, along with an infinite family of tiles that we’ll call
generalized Voderberg tiles, can be constructed using the method of Goldberg [2].
This construction is given in Figure 5.

The Voderberg tile is rather remarkable: along with other nice properties, it has
the property that two copies can almost completely surround a third copy (Figure 4).

Figure 4. At the left is the Voderberg tile. It can almost be surrounded by two copies (center figure), and also
two copies can almost be surrounded by two copies (right figure).
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Figure 5. The construction of the generalized Voderberg tile. First construct four equidistant parallel lines,
then make ABC D with right angles at B and C. Let n be an even number (n = 4 here) and construct n equal
line segments with endpoints on the circular arcs ED and AF, where A and D, respectively, are the centers
of rotation. Let E’ be the closest of the segment endpoints on arc ED to E. Let S = AFBCE. Let ¢ be the
rotation about A taking E’ to E. Then the figure bounded by S, o (), and Eo (E) is the generalized Voderberg
tile that can almost surround 27 and 2n + 1 copies of itself with only two copies.

In fact, the Voderberg tile has the property that two copies can almost completely
surround two copies (Figure 4). Moreover, for every positive integer n there is a gen-
eralized Voderberg tile T such that two copies of 7' can almost completely surround n
copies of T. An example of a generalized Voderberg tile in which two copies almost
completely surround four copies is shown in Figure 6. As can be seen from these ex-
amples, there are always two exposed points that are not surrounded. What we aim to
do in this paper is to make modifications to the Voderberg tiles that will correct this.

The modifications made to the Voderberg tile are the strategic placement of some
“hooks” and “catches” (Figure 7). With these hooks and catches in place, it is clear
how to fit the tiles together, and one sees that two copies of this tile now surround a
third copy (Figure 8). With these alterations, this tile does not give rise to any tilings
of the plane.

In the right-hand configuration of Figure 4, we see that two copies of the Voderberg
tile can almost surround two copies. As an exercise, we suggest that the reader try to
modify the Voderberg tile so that two copies completely surround two copies. (Hint:
start by adding a small “tongue” to the rightmost copy to cover the exposed vertex
at the top, then follow the implications around.) As we stated, the Voderberg tile can
be generalized so that two copies of the tile can surround any number of copies of the
tile, except for two points. By modifying these generalized Voderberg tiles in a manner

Figure 6. A generalized Voderberg tile is at left. At right, two copies almost surround four copies.
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Figure 8. The modified Voderberg tile surrounding itself with two copies.

similar to what we did earlier, we can show that there are two distinct families of
figures (one for surrounding even numbers of shapes, one for surrounding odd numbers
of shapes) that together satisfy the following theorem:

Theorem 1. For each integer N > 1, there exists a tile Ty for which two congruent
copies of Ty can completely surround N copies of Ty.

Our surround number 2 example disproves a conjecture made by Friedman in [1].
Friedman conjectured that no tile with surround number 2 (and Heesch number' 1)

1Roughly speaking, the Heesch number of a tile T is the maximum number of layers (i.e., rings or annuli)
of copies of T that may surround 7. Our example is easily seen to have Heesch number 1.
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Figure 9. U-shaped polyomino that can form an annulus around itself with two copies, but a gap remains.

can exist. Indeed, this conjecture was reasonable; to see this, all one has to do is try
to find such an example for oneself. It is not too hard to find tiles that almost have
surround number 2. For example, one can easily find examples in which two copies
of the tile form an annulus around a third, but leave unfilled gaps in the interior of the
configuration, as in Figure 9. A three-dimensional analog of Figure 9 exists as well:
namely, an open-top 6 by 8 by 10 box with walls of thickness 1, where the open top is
on the 8 by 10 side. A few more related questions are posed by Grunbaum in [4] and
in [5]: (1) Does there exist a tile T such that T has surround number 2 and 7' can be
used to tile the entire Euclidean plane? (2) Does there exist a tile T that gives rise to a
tiling of the plane in which a copy of T is surrounded by two copies of T? So far as
this author knows, both of these problems are unsolved. Our example does not settle
either question, for it cannot be used to tile the plane.

It is natural to ask about surround numbers of three-dimensional tiles. We do not
know of any three-dimensional tiles with surround number 2 or 3; however, we can use
the surround number 2 tile to generate a three-dimensional tile with surround num-
ber 4. This tile is a cylinder with the surround number 2 tile as its base. Here are
the directions for its construction: make the height of this cylinder greater than the
diameter of the base (of the cylinder); start with three cylinders whose bases are as
in the left-hand configuration in Figure 8; finally, use the wide facet of a tile to cap
the base and another to cap the top. This gives a tile with surround number 4 in three
dimensions. In exactly this same way we can construct cylinders with the modified
generalized Voderberg tiles as the bases to get three-dimensional tiles satisfying the
following theorem:

Theorem 2. For each integer N > 1, there exists a three-dimensional tile Ty for
which four congruent copies of Ty can completely surround N copies of Ty.

As we noted before, the open-top 6 by 8 by 10 box with walls of thickness 1 has
the property that two copies form a shell about a third, but a gap remains. With this
example in mind, we can see that if three-dimensional tiles with surround number 2 do
not exist, then the reason might be very subtle. With that, we close with the following
open question:

Open Question 1. Do there exist three-dimensional tiles with surround numbers 2
and 3?
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On Stirling’ s Formula

Reinhard Michel

1. INTRODUCTION. By means of simple but skillful estimates for the log-function
we give a short, direct, and elementary proof of Stirling’s formula and derive bounds
for two asymptotic expansions.

2. STIRLING’S FORMULA. Well-known is n! = f0°° x"e™ dx. The substitution
X = y«/n +n gives

nl = n'Jie ™ / e dy, neN, M

—00

where g,(y) = (1 + %)ne—yﬁ 1 mo0(), ¥ € R. Since

1
log(1+x) —x+ Exz

(o] 3
|x 1 x|
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Note that (2) yields lim,ey g,(y) = e /2, y € R.

. x2 ’ x2—x
Next, consider f(x) = x — %m —log(l1+x), x > —1.As f'(x) = xm,

this function has an absolute minimum at x = 0. Therefore, log g,(y) < _%2+;/«/i ’
y > —+/n, which implies that
1
0< g =e ™" Iyl>3vn ?3)
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