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ABSTRACT

This work is motivated by a paper of Huh and Oh, in which the authors prove that
the minimum number of sticks required to form a knot in Z

3 is 12. In this article the
authors prove that the stick number in the simple hexagonal lattice is 11. Moreover, the
stick number of the trefoil in the simple hexagonal lattice is 11.
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1. Stick Knots in the Simple Hexagonal Lattice

The simple hexagonal lattice (sh) is the point lattice with basis {x, y, w} where x =
〈1, 0, 0〉, y = 〈1/2,

√
3/2, 0〉 and w = 〈0, 0, 1〉. The directions of sh are the vectors

x, y, w and z = y − x. An sh-stick is a straight line segment with endpoints in sh
that is parallel to a direction of sh. An sh-stick that is parallel to x will be called an
x-stick and y-, z-, and w-sticks are defined in the same way. In Fig. 1 we have an 11-
stick 31. Letting X = −x, Y = −y, Z = −z and W = −w, the depicted knot can
be described by the string of vectors wxxxWWzzwwwY Y Y WWxyyyyXXY Y Y .
The minimum number of sh-sticks required to form a nontrivial knot is the stick
number of sh. The minimum number of sh-sticks required to form a knot of type K

is the sh-stick number of K, denoted Ssh(K).
Given a polygon P made from sh-sticks, |P| will denote the number of sh-sticks

in P . |P|x denotes the number of x-sticks in P with |P|y, |P|z and |P|w defined
similarly. Planes that are parallel to the xy-plane and contain x-, y- or z- sticks of P
will be called w-levels of P . A polygon P is properly leveled with respect to w if each
w-level of P contains just one connected polygonal arc. Note that if P is properly
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Fig. 1. At left is a 12-stick 31 knot in Z
3. At right is an 11-stick 31 knot in the simple hexagonal

lattice (sh).

leveled with respect to w and has n w-levels, then |P|w = n. A trivial polygon is a
trivial polygonal knot. Two polygons are said to be equivalent if they are ambient
isotopic in R

3. A polygon P is called reducible if there is another equivalent polygon
that has fewer sticks; otherwise irreducible. If P has n w-levels, then we enumerate
the w-levels, calling them levels 1, 2, . . . , n (like heights). In particular, w-levels 1
and n are the boundary w-levels.

We give a few lemmas (Lemmas 1.1, 1.2, 1.3, and 1.4) that are analogous to
lemmas given in [1] (that apply to the cubic lattice) and whose proofs are identical.
These lemmas are stated only for w-sticks as w-sticks are perpendicular to the
xy-plane and so behave like sticks in the cubic lattice.

Lemma 1.1. For a given polygon P , there is a polygon P ′ of the same knot type
that is properly leveled with respect to w such that |P ′| = |P|.

The basic idea of the proof of this lemma is that if some w-level, say the mth,
contains more than one connected arc, one can move the part of P above (or below)
the mth w-level up (or down) by one or more levels (by stretching the w sticks).
This clears out room to move one or more of the arcs in the mth level onto other
levels so that each connected arc is on its own w-level.

For the remainder of the paper, we will assume that all polygons are properly
leveled with respect to w.

Lemma 1.2. If two w-sticks of a polygon P have their endpoints on the same two
w-levels, then P must be the trivial polygon.

Lemma 1.3. Let P be a nontrivial irreducible polygon. Then the boundary levels
of P contain only one or two connected sticks. Furthermore, any w-stick of P with
an endpoint on a boundary level has length at least two.

Lemma 1.4. If P is a nontrivial irreducible polygon, then |P|w ≥ 4.

Lemma 1.5. If |P| ≤ 10 and |P|w ≥ 5, then P is a trivial polygon.
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Proof. First note that since P is properly leveled with respect to w, it must have
at least one sh-stick on each w-level. Also, P must have the same number of w-sticks
as w-levels. If P were to have six or more w-levels, then P must have at least twelve
sh-sticks; thus we can exclude the possibility that |P|w ≥ 6.

If P has five w-levels, then it must have exactly five w-sticks and exactly one
sh-stick on each w-level. We will show that P has a projection having two or fewer
crossings, implying that P is a trivial polygon. Let π(P) be the perpendicular
projection in the w direction of P onto any w-level. By Lemma 1.3, the w-sticks of
P project to five distinct points in π(P). But, because P is made from straight lines,
it is possible that entire line segments from P that lie in different w-levels will be
projected on top of each other, so we may have to slightly isotope the knot before
projecting to reveal obscured crossings. If π(P) contains an unobscured crossing
(i.e. a crossing forming an angle of π/3 in π(P)), then by rotating or reflecting P
appropriately and giving an orientation to P , we can say without loss of generality
that a crossing is seen in π(P) in one of two possible ways, which are depicted at
left in Fig. 2. In either case, it must be checked that any possible way to complete
the circuit in π(P) (so that this projection will represent the closed polygon P)
gives a projection that has at most two crossings.

In the first case, (upper left of Fig. 2), because of the orientation on P we must
connect point B to point C and we must connect point D to point A with the
remaining three lattice sticks. If B can be connected to C with just one sh-stick, no
new crossings will be formed in connecting them and there will remain two sh-sticks
with which to connect D to A. D can be connected to A using two sh-sticks in a
few different ways. We depict representative ways in which new crossings may occur
in the top middle and top right diagrams of Fig. 2. As illustrated in the top right
diagram in Fig. 2, in connecting D to A with two sticks, the projections of one or
both of those sticks may be obscured by the segments AB or CD in π(P). Lastly,
it is seen that for any configuration, by first slightly perturbing the w-sticks of P
at A, B, C, D and E without introducing crossings (as in Fig. 3), a projection of
a slightly isotoped version of P with at most two crossings is possible.

π/3
A

D

B

C

A

D

B

C

A

D

B

C
E

E

π/3
A

D

B

C

Fig. 2. A crossing in π(P).
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Fig. 3. Perturbing the w-sticks of P without introducing crossings.

In the second case (lower left, Fig. 2), it is impossible to complete the circuit
with only three sticks.

If in π(P) there are no unobscured crossings and no line segments have been
projected on top of each other, then using isotopies as depicted in Fig. 3, we see
that P is trivial. But, even if some line segments have been projected on top of
each other, potentially contributing obscured crossings, we will show that P can
be slightly isotoped to obtain a projection π(P) with at most one crossing. To
prove this, assume that some line segments have projected on top of each other in
π(P) and that there are no unobscured crossings in π(P). Let W be the maximum
number of w-sticks whose projection lie on a single line in π(P).

If W = 5, then P lies in a single plane and so must be a trivial knot.
In the case that W = 4, let A be the projection of the w-stick that is not

collinear with the other four. Viewing π(P) as a graph, each of the five w-stick
projections must have valence 2. Thus, A connects to two other points in π(P);
we mark these points with an “X” in Fig. 4. Up to symmetry, there are only four
distinct possibilities for the locations of the points marked X. For each of these, there
are two ways to connect the five points to form a closed loop. The top row of Fig. 4

Fig. 4. Four collinear w-stick projections.
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shows the four possible arrangements of the points marked X, and below each of
these four arrangements are slightly isotoped versions of the possible ways to form a
closed loop through the five points. Each picture has one crossing or zero crossings.

Suppose that W = 3. If there is only one set of three collinear w-stick projec-
tions, then since we are under the hypothesis that there are no unobscured cross-
ings, the other two w-stick projections must lie on one side of the line through the
three collinear w-stick projections. There are two ways (up to symmetry) that this
situation can occur, and via a slight isotopy it is easily seen that both of these pos-
sibilities contain no obscured crossings (Fig. 5). Notice that since we are under the
hypothesis that there are no unobscured crossings, we know that no crossings occur
outside of a small neighborhood of the line segment containing the three collinear
points (shaded grey in Fig. 5).

If there are two sets of three collinear w-stick projections, we see in Fig. 6 the
isotopies that reveal that there is a projection of P with no crossings.

Fig. 5. One set of three collinear w-stick projections.

Fig. 6. Two sets of three collinear w-stick projections.
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For W = 2, π(P) will be a simple polygon, and by perturbing the w-sticks of P
as in Fig. 3, we see that P may be projected to a diagram with no crossings.

Lemma 1.6. If P is irreducible, |P| ≤ 10, and P has four or more sh-sticks on its
boundary levels, then P is trivial.

Proof. Using the previous lemmas, if |P|w �= 4, then P is trivial. Otherwise, P
has at most 10 sh-sticks, four of which are w-sticks (since there are exactly four
w-levels) and at least two of which are on intermediate w-levels, P can have at
most four sticks on its boundary w-levels. So, assuming P has exactly four sticks
on its boundary w-levels, it may have three sticks on one boundary w-level and one
on the other, or it may have two sticks on both boundary w-levels. The first case,
though, can be easily excluded: If P has three sticks in a single boundary w-level,
those three can be reduced to two without changing the knot type of P . To see this,
let γ be a three-stick arc on a boundary level with endpoints A and B. Notice that
A and B are on opposite corners of a parallelogram R formed from x- and y-sticks.
Let γ′ be the arc from A to B formed from the x-stick side of R having A as an
endpoint and the y-stick side of R having B has an endpoint. Then we may replace
γ with γ′ in P without changing the knot type. In a similar way, the arc γ′ can be
formed from x- and z-sticks or y- and z-sticks.

Thus, we have reduced the problem to showing that if P has two sh-sticks on
each of its two boundary w-levels, then P is trivial. To this end, we first note that
if P does not contain at least one x-stick, one y-stick and one z-stick, then it must
be trivial. To see this, suppose that P contains no z-sticks. In this case, P may
be “sheered” parallel to the x-direction so that the angles between x-sticks and y-
sticks become π/2. The resulting knot will clearly be of the same type as P , but will
be a 10-stick polygon in the simple cubic lattice; consequently, P must be trivial
since the minimal stick number in Z

3 is 12. P may be similarly sheered if it has no
x-sticks or no y-sticks.

Now, if P has two sh-sticks on each of its two boundary w-levels, since there
are exactly four w-sticks in P , there must be exactly one stick on each of the two
intermediate w-levels; without loss of generality, let us assume that neither of these
two sticks is a z-stick. If we focus our attention to the top boundary w-level, and
call the arc in this level γ and its endpoints A and B (as before), we may replace γ

with an arc γ′ in the same manner as was shown previously so that γ contains no
z-sticks. The same procedure can be performed on the bottom boundary w-level as
well to create an sh-polygon equivalent to P that contains no z-sticks on any of its
w-levels. By our previous observation involving sheering, we can now see that P is
trivial.

Figure 1 shows an 11 stick trefoil in the simple hexagonal lattice. We would
like to show that there are no nontrivial polygons consisting of 10 or fewer sticks.
From the above lemmas, this problem is reduced to checking that every polygon P
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T

B

O

O B

T

Fig. 7. At left: A partially formed lattice polygon P with two boundary sticks. At right: The
projection of P onto a w-level.

that is properly leveled with respect to w with |P|≤ 10 and |P|w =4 is trivial. By
Lemmas 1.2 and 1.3, such a polygon P must have one w-stick of length 4, two of
length 2 and one of length 1, arranged as depicted at left in Fig. 7. By Lemma 1.6
we need to only consider polygons whose boundary w-levels contain, in total, two or
three sticks. We may assume without loss of generality that the top level contains
one x-stick and the bottom level contains either one or two sticks. To show that
any such polygon P is trivial, we will show that P is equivalent to one of finitely
many polygons, all of which are verified to be trivial.

Roughly speaking, the remainder of the paper is organized as follows.

(1) The relative lengths and arrangements of the two or three sticks on the bound-
ary w-levels of any polygon are enumerated and we argue that there are only
finitely many such arrangements that one must consider (see Tables 1 and 2).
Each case will result in a partially completed polygon (for example Fig. 7).

(2) The remaining sticks include the fourth w-stick whose endpoints lie in w-levels 2
and 3, and the sticks lying entirely in w-levels 2 and 3. In Lemma 1.8 we
bound, in the projection, the distance of the endpoints of these sticks from the
endpoints of the w-sticks placed in Step 1.

(3) The exhaustive enumeration of polygons is performed by a computerized algo-
rithm. Each polygon is then verified to be trivial by a reduction algorithm.

The remainder of this section is devoted to making this description rigorous. It
will be helpful to first consider a specific example. Suppose that a specific arrange-
ment of boundary sticks has been chosen as in Fig. 7. At right in that figure is
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a projection of P onto a w-level in which the w-sticks of P have been collapsed
to points at O, B and T . As described above, we now make a number of choices
to complete P . First we will choose the placement of the fourth w-stick. Call its
projection A.

With all the w-sticks in place we will choose sticks to connect T with A on
w-level 2 and sticks to connect B with A on w-level 3. These sticks must avoid the
w-sticks at O, B and T . Notice after w-sticks and boundary sticks are chosen, we
can use at most four sticks (total) on w-levels 2 and 3 to create a closed polygon
with 10 or fewer sticks. A particular choice of such a completion is shown in Fig. 8.

In the projection, for a given point P = (a, b) of the lattice (the point a(1, 0) +
b(1/2,

√
3/2)), consider the three lines passing through this point in the lattice given

by the equations x = a, y = b and x + y = a + b. We will refer to these as the
x-starline of P , y-starline of P and x + y-starline of P , respectively. The collection
of all three lines will be called the star of P , denoted s(P ). Two points P = (a, b)
and Q = (c, d) can be connected via one stick if and only if Q is on s(P ). Points P

and Q are connected via two sticks by choosing a point in s(P )∩s(Q). There are at
most six intersection points allowing up to six distinct two stick paths connecting
P and Q (see Fig. 9). In order to connect P and Q with a three stick path, the first
stick will lie on a star of P . Call the endpoints of this stick P and R. Now choose
a two stick path connecting R and Q as discussed above.

We can now explain our method for enumerating the cases. We assume the
point O is the origin, and after a possible rotation that T is (a, 0). We then divide
the plane into a number of regions (using stars of O and T as well as the line
y = a), as pictured in Fig. 10. We label the corners, line segments and rays on the

T

B

O

O

B

T

C1

C2

A

C1

C2

A

Fig. 8. The completion of P. The green lines in the projection are the stars through O, B and T .
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Fig. 9. The intersection points of stars of P and Q.

Fig. 10. Partitioning the w-plane into regions.
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boundaries of the regions B1, . . . , B18 and open regions O1, . . . , O10. Two partitions
of the w-plane into regions are considered equivalent if there is a bijection from the
set of regions in the first to the set of regions in the second that preserves adjacency
of regions. Note that a ≥ 3 will ensure that O1, . . . , O10 are nonempty.

Next, consider the placement of B. We will assume without loss of generality
that B is placed in the upper-half plane. Once the point B is placed, the stars of
O, T and B will partition the w-plane into regions. As one can see from examining
Fig. 10, the resulting partitions are equivalent for any two choices of B within a
given labeled region (Oi or Bi) and changes as B passes from one region to the
next. To keep track of B we will use the scheme depicted in Fig. 11. Thus we need
to specify θ, γ, b and c. One can write equations with restrictions defining the
boundary regions Bi. For example, B15 is defined by y = a with restriction x < −a.
If B is placed in B15, then θ = π/3, γ = π, b = a and c > a. Table 1 contains θ,
γ, as well as restrictions for b and c for B chosen in Bi. Similarly, Table 2 gives
information for the open regions Oi in the partition.

Many choices for B and T will yield equivalent partitions of the w-plane. We
want to choose one representative from each class. In choosing a representative,
we must also be careful that the boundaries in any region created by the stars of
O, T and B are large enough that the interior of the region contains points of the
lattice. This will be true provided the length of a boundary segment for a region
is at least 3. This will be ensured if a ≥ 3 and the gaps for strict inequalities in
Tables 1 and 2 are at least 3. The last three columns in both of the tables give one
representative for each class satisfying these conditions.

We now choose up to three points C1, C2, C3 (called completion points) to
complete the polygon. One of these completion points will represent the fourth
w-stick. The other completion points will represent endpoints of the other sticks
used to complete the arcs on w-levels two and three. Specifically, for completion
points C1, C2, C3, we will use the sticks TC1, C1C2, C2C3, C3B to complete the
arcs.

Fig. 11. The arrangement of sticks in the boundary w-levels.

1250120-10

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
SP

C
 o

n 
10

/2
3/

12
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

October 5, 2012 5:13 WSPC/S0218-2165 134-JKTR 1250120

The Stick Number for the Simple Hexagonal Lattice

Table 1. The boundary cases.

Region containing B θ γ Restriction for b Restriction for c a b c

B1 π/3 — 0 < b < a — 6 3 —
B2 π/3 — b = a — 3 3 —
B3 π/3 — b > a — 3 6 —
B4 π/3 0 0 < b < a c = a 6 3 6
B5 π/3 0 b = a c = a 3 3 3
B6 π/3 0 b > a c = a 3 6 3
B7 π — b > 0 — 3 3 —
B8 0 — 0 < b < a — 6 3 —
B9 0 — b > a — 3 6 —
B10 2π/3 — 0 < b < a — 6 3 —
B11 2π/3 — b = a — 3 3 —
B12 2π/3 — b > a — 3 6 —
B13 π/3 0 0 < b < a a − b = c 6 3 3
B14 π/3 π b > a b − a = c 3 6 3
B15 π/3 π b = a c > a 3 3 6
B16 π/3 π b = a 0 < c < a 6 6 3
B17 π/3 0 b = a 0 < c < a 6 6 3
B18 π/3 0 b = a c > a 3 3 6

Table 2. The interior cases.

Region containing B θ γ Restriction for b Restriction for c a b c

O1 π/3 π 0 < b < a c > b 6 3 6
O2 π/3 π 0 < b < a c < b 9 6 3
O3 π/3 0 0 < b < a 0 < c < a − b 9 3 3
O4 π/3 0 0 < b < a a − b < c < a 9 6 6
O5 π/3 0 0 < b < a c > a 6 3 9
O6 π/3 π b > a c > b 3 6 9
O7 π/3 π b > a b − a < c < b 6 9 6
O8 π/3 π b > a 0 < c < b − a 3 9 3
O9 π/3 0 b > a 0 < c < a 6 9 3
O10 π/3 0 b > a c > a 3 6 6

From the above tables we see that there are 28 cases to consider concerning the
placement of the boundary paths in a 10-stick polygon.

We now argue that once O, B and T are placed, there is a bound on how far
away the fourth w-stick needs to be placed from O.

For a point P = (a, b) in the hexagonal lattice, we define |P | to be the dis-
tance from P to the origin. Using the distance formula from [2], we have |P | =
max{|a|, |b|, |a + b|}. For a set of points A, define maxdist(A) = max{|P | : P ∈ A}.

Lemma 1.7. If P and Q in the hexagonal lattice are contained within the hexagon
of radius r centered at the origin, then s(P ) ∩ s(Q) is contained in the hexagon of
radius 2r.

Proof. Assume P = (a, b) and Q = (c, d) lie within a hexagon of radius r centered
at the origin. Then max{|a|, |b|, |a + b|} ≤ r and max{|c|, |d|, |c + d|} ≤ r. Note
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that s(P ) ∩ s(Q) = {(a, c + d − a), (c + d − b, b), (c, b), (a, d), (a + b − d, d), and
(c, a + b − c)} (see Fig. 9). One can quickly check that points (x, y) in s(P ) ∩ s(Q)
satisfy max{|x|, |y|, |x + y|} ≤ 2r.

Lemma 1.8. Given a polygon P containing three or fewer sticks on each w-level
with w-stick projections O, T, B (as described previously), there exists an equivalent
polygon P ′ with w-stick projections O′, T ′, B′ satisfying:

(1) T ′ and B′ are chosen from the last three columns in Tables 1 and 2
(2) P ′ contains three or fewer sticks on each w-level
(3) P ′ is contained in a cylinder of radius r = 2(1+maxdist{{O′, T ′, B′}∪(s(O′)∩

s(T ′)) ∪ (s(O′) ∩ s(B′)) ∪ (s(T ′) ∩ s(B′))}) ≤ 32.

Proof. Up to three completion points exist in π(P). One of these completion points
will represent the fourth w-stick. The other completion points will represent other
endpoints of sticks used to complete the arcs on w-levels two and three. Specifically,
for completion points C1, C2, C3, we will use the sticks TC1, C1C2, C2C3, C3B to
complete the arcs. We will have the first completion point on s(T ) and the last
completion point on s(B). Note that T and B will satisfy one row of restrictions in
Tables 1 and 2. Choose T ′ and B′ to be the one representative for that case given
in the last three columns of the tables.

Case 1. Suppose exactly one completion point C1 exists in π(P). Then C1 ∈
s(T )∩ s(B). Choose C′

1 to be the corresponding intersection point in s(T ′)∩ s(B′).

Case 2. Suppose exactly two completion points C1 and C2 exist in π(P). The point
C1 is either: (i) a corner of a boundary segment in the partition of O, T and B

or (ii) an interior point of a boundary segment in the partition of O, T and B. If
(i), then choose C′

1 to be the corresponding corner of a boundary segment in the
partition of O′, T ′ and B′. If (ii), then choose C′

1 to be the first interior point of the
corresponding boundary segment in the partition in the direction of

−−→
TC1. Choose

C′
2 ∈ s(C′

1) ∩ s(B′) corresponding to the intersection point C2 ∈ s(C1) ∩ s(B).

Case 3. Suppose three completion points C1, C2, C3 exist in π(P). The point C1

is either: (i) a corner of a boundary segment in the partition of O, T and B or
(ii) an interior point of a boundary segment in the partition of O, T and B. If
(i), then choose C′

1 to be the corresponding corner of a boundary segment. If (ii),
then choose C′

1 to be the first interior point of the corresponding boundary segment
in the direction

−−→
TC1. The point C3 is either: (i) a corner of a boundary segment

in the partition of O, T and B or (ii) an interior point of a boundary segment in
the partition of O, T and B. If (i), then choose C′

3 to be the corresponding corner
of a boundary segment. If (ii), then choose C′

3 to be the first interior point of the
corresponding boundary segment in the direction

−−→
BC3. Choose C′

2 ∈ s(C′
1)∩ s(C′

3)
corresponding to the intersection point C2 ∈ s(C1) ∩ s(C3). See Fig. 12 for an
example.
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O T ′

C1′

C3′ B′C3

C1C2

B

T O′

C2′

Fig. 12. The projections of the original lattice polygon P and the corresponding polygon P ′
illustrating Case 3 of Lemma 1.8 are pictured.

At this point π(P ′) is complete. To create the polygon P ′ from π(P ′), place
C′

i on the same w-level(s) used for Ci as well as placing T ′C′
1, C

′
1C

′
2, C

′
2C

′
3, C

′
3B

′

on the same w-levels used for TC1, C1C2, C2C3, C3B. Note the P ′ is a well-formed
polygon which is equivalent to P satisfying (1) and (2). By Lemma 1.7, in the
worst case scenario (Case 3), C′

1, C
′
2, C

′
3 would be contained in a hexagon of radius

2(1 + maxdist{{O′, T ′, B′} ∪ (s(O′) ∩ s(T ′)) ∪ (s(O′) ∩ s(B′)) ∪ (s(T ′) ∩ s(B′))}.
Hence the polygon P ′ will satisfy (3). One can verify that r ≤ 32 over all choices
for B′ and T ′.

Theorem 1.9. The stick number of the simple hexagonal lattice is 11. Moreover,
Ssh(31) = 11.

Proof. That the stick number of sh is bounded by 11 is guaranteed by the 11-stick
31 sh-knot shown in Fig. 1. Thus Ssh(31) ≤ 11 as well. In order to prove the result,
we will show that any sh-polygon P with 10 or fewer sticks is the trivial polygon.
From the lemmas we may assume P is properly leveled with respect to w, |P|w = 4,
P uses one stick on w-level 4 whose endpoints are O and T , and P uses one or two
sticks on w-level 1. In addition, using Lemma 1.8 we may assume that O is the ori-
gin and B and T come from one of the 28 cases in Tables 1 and 2 and A lies in the
cylinder of radius 32. The algorithm for checking all the representatives of all possi-
ble 10-stick sh-polygons with above conditions for knottedness proceeds as follows:

(1) For each arrangement of sticks on the boundary w-levels from Tables 1 and 2,
construct the stars of O, T and B.

(2) Choose a point A in the cylinder of radius 32.
(3) If it is an arrangement of three sticks on the boundary w-levels (one on top and

two on bottom),

(a) Choose a point C1 from the star of T and a point C2 from the star of B.
These choices must be made systematically so that the choices of C1 and C2

represent all allowable boundaries of regions and corners of regions bounded
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by the stars of T and B that may contain a corner of a representative
polygon.

(b) Connect C1 to C2 with one stick if possible (it is only possible if C2 is on
the star of C1).

(c) Complete the polygon by adding vertical sticks (as at left in Fig. 8).
(d) Check the resulting polygon for knottedness.

(4) If it is an arrangement of two sticks on the boundary w-levels,

(a) Choose a point C1 from the star of T and a point C3 from the star of B.
These choices must be made systematically so that the choices of C1 and C3

represent all allowable boundaries of regions and corners of regions bounded
by the stars of T and B that may contain a corner of a representative
polygon.

(b) Choose a point C2 from each of the remaining allowable regions or bound-
aries of regions. C2 must be chosen from the star of C1 if there are to be
two sticks on the second w-level (from the top), or C3 must be chosen from
the star of C2 if there are to be two sticks on the third w-level.

(c) Connect C1 to C2 to C3.
(d) Check the resulting polygon for knottedness.

The computer algorithm employed to check for knottedness used the procedure
described in [3]. The program revealed that every representative was the unknot,
which concludes the proof. The C++ code for this program along with the out-
put it generated are available at http://www.math.uttyler.edu/cmann/stick-knots/
checked.txt and http://www.math.uttyler.edu/cmann/stick-knots/main.cpp.

2. Conjectures for Other Lattices

2.1. The face-centered cubic lattice

The face-centered cubic lattice has basis

F =
{
〈1, 0, 0〉, 〈0, 1, 0〉,

〈
1
2
,
1
2
,

1√
2

〉}
.

We make the following conjecture.

Conjecture 2.1. The stick number of the face-centered cubic lattice is 9. Moreover,
Sfcc(31) = 9.

In Fig. 13, we provide an example of a 9-stick fcc-knot.

2.2. The body-centered cubic lattice

The body-centered cubic lattice has basis

B = {〈2, 0, 0〉, 〈0, 2, 0〉, 〈1, 1, 1〉}.
Based on Fig. 14, we have the following conjecture.
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Fig. 13. A 9-stick fcc-knot. The twelve direction vectors pointing from a lattice point to its twelve
neighbors are a0 =(1, 0, 0), a1 = (−1, 0, 0), a2 =(0, 1, 0), a3 = (0,−1, 0), a4 =(1/2, 1/2, 1/

√
2),

a5 = (−1/2,−1/2,−1/
√

2), a6 =(−1/2, 1/2, 1/
√

2), a7 =(1/2,−1/2,−1/
√

2), a8 = (−1/2,−1/2,
−1/

√
2), a9 =(1/2, 1/2,−1/

√
2), a10 = (1/2,−1/2, 1/

√
2), a11 =(−1/2, 1/2,−1/

√
2). Using this

notation, the knot depicted above is described by the string 4a96a24a56a88a05a116a68a3a10.

Fig. 14. A 12-stick bcc-knot. The eight direction vectors pointing from a lattice point
to its eight neighbors are a0 = (1, 1, 1), a1 = (−1,−1,−1), a2 =(−1, 1, 1), a3 = (1,−1,−1),
a4 = (−1,−1, 1), a5 = (1, 1,−1), a6 = (1,−1, 1), a7 = (−1, 1,−1). The string for this knot is then
a0a0a3a3a1a4a2a2a7a5a3a6a6a4a4a7a7a5.

Conjecture 2.2. The stick number of the body-centered cubic lattice is 12.

Moreover, Sbcc(31) = 12.
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