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Abstract

In this article we introduce the notion of equilateral k-isotoxal tiles and give of
examples of equilateral k-isotoxal tiles for 1 ≤ k ≤ 4.

1 Introduction

A plane tiling T is a countable family of closed topological disks T = {T1, T2, ...} that cover
the Euclidean plane E2 without gaps or overlaps; that is, T satisfies

1.
⋃
i∈N

Ti = E2, and

2. int(Ti) ∩ int(Tj) = ∅ when i 6= j.

The Ti are called the tiles of T . For a polygonal tile it is clear what is meant when refering to
the vertices and edges of a tile, but in general, the vertices of a tile are any finite collection of
points on the boundary of the tile, and the edges of the tile are the arcs along the boundary
of the tile between two consecutive vertices. We may also refer to the edges and vertices of
a tiling. The intersection of any two distinct tiles in a tiling T is called an edge of the tiling,
which may be a collection of disjoint arcs. The end points of the arcs comprising the edges of
a tiling will be called the vertices of the tiling. If the vertices and edges of the tiles in a tiling
coincide with the vertices and edges of the tiling, then the tiling is said to be edge-to-edge.

A tiling T is isotoxal if every edge of T is in a single transitivity class with respect to the
symmetry group of T ; that is, T is isotoxal if for any two edges ei and ej of T , there exists
a symmetry of the tiling taking ei onto ej. One can find many simple examples of isotoxal
tilings, such as the regular tilings by equilateral triangles, squares, and regular hexagons. In
fact, isotoxal tilings have been classified according to topological type and incidence symbols,
and there 26 such tilings [2]. The notion of isotoxal tilings can be generalized in the obvious
way to k-isotoxal tilings in which there are k transitivity classes of edges.

Our focus will be on finding tiles that admit only k-isotoxal tilings. Of course, this
problem is trivial if all of the edges of a tile are not congruent. For this reason, we will
require our tiles to be equilateral. An equilateral tile that admits only k-isotoxal edge-to-
edge tiles of the plane will be called equilaterally k-isotoxal.

The distinction between k-isotoxal tilings and equilaterally k-isotoxal tiles is analagous
to the distinction between nonperiodic tilings and aperiodic protosets: a nonperiodic tiling is
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one whose symmetry group does not contain two nonparallel translations, while an aperiodic
protoset is a set of tiles that admits only nonperiodic tilings. While nonperiodic tilings are
not hard to find, aperiodic protosets are rare and difficult to find. In a similar way, k-isotoxal
tilings are not difficult to generate (just consider tilings involving nonequilateral tiles), but
equilaterally k-isotoxal tiles seem difficult to find.

2 Examples of equilaterally 2- and 3-isotoxal tiles

First, we note that the regular hexagon is an equilaterally 1-isotoxal tile. In Figure 1 is
an equilaterally 2-isotoxal tile. This tile is a square whose sides have been marked with
asymmetric bumps and nicks. We will declare that this tile has four vertices at the corners
of the square. That the corners incident to the bumps and nicks are not counted as vertices
is not way of cheating since it is easy round off those corners to create a smooth curve whose
endpoints are the corners of the underlying square.

Figure 1: A patch formed by an equlaterally 2-isotoxal tile. The transitivity classes of edges
are indicated by color.

Figure 2 shows an equilaterally 3-isotoxal tile.
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Figure 2: A patch formed by an equlaterally 3-isotoxal tile. The transitivity classes of edges
are indicated by color.

Proposition 1. The tile of Figure 1 is equilaterally 2-isotoxal and the tile of Figure 2 is
equilaterally 3-isotoxal.

Proof. The proof that the prototile of Figure 1 is equilaterally 2-isotoxal will be given here.
The proof that the prototile of Figure 2 is equilaterally 3-isotoxal, being similar, is left as an
exercise.

First note that due to the bumps and nicks on the prototile of Figure 1, the tile can
admit only edge-to-edge tilings. It will be shown that the tiling of Figure 1 is the only tiling
that its prototile admits. To keep track of the original top, bottom, left, and right sides of
the prototile, color the edges of the prototile as at left in Figure 3. It is first shown that
the left side of the tile must meet only the right side of the tile in any tiling formed by this
prototile. That the top side meeting the right side is disallowed is argued in Figure 3, where
it is seen that allowing the top side to meet the right side forces one of two configurations,
neither of which can be continued. Similarly, if the bottom side meets the left side, calling
on the fact that the top side may not meet the right side, one of two configurations is forced,
and neither of these can be continued to a tiling of the plane (Figure 4). Thus, the left side
can meet only the right side and vice versa, which allows for copies of the prototile to form
infinte rows as in Figure 5. The proceeding two arguments make it clear that the top side
must meet only the bottom side, so the only way to tile the plane with this prototile is to
use the rows of Figure 5 in an alternating fashion, as in 1. Additionally, because the top
side can meet only the bottom side and the left side can meet only the right side, the tiling
admitted by this prototile is 2-isotoxal.
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Figure 3: The top side cannot meet the right side.

Figure 4: The bottom side cannot meet the left side.

. . . . . .

Figure 5: The left side must meet the right side to form infinite rows congruent to this.

3 Matching Rules

In our examples, we used basic polygonal shapes whose sides were marked with certain
kinds of edge matching rules. In particular, we used asymmetric bumps and nicks. In
full generality, the edge matching rules of a tile for which copies must meet edge-to-edge
can be viewed as a formal declaration of what sides of the tile may meet with one another.
However, edge matching rules with such generality often cannot be realized in terms of purely
geometrically defined tiles. Indeed, some of the most common types of edge matching rules
are not geometrically enforceable, such as colored edges or directed edges. Geometrically
enforceable edge matching rules are those that can be enforced using edges of four kinds of
curves: straight line segments, S-curves, C-curves, and J-curves. S-curves are nonstraight
curvilinear segments that have 180◦ rotational symmetry about their midpoints. C-curves
are nonstraight curvilinear segments that have reflective symmetry about their perpendicular
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bisectors. Note that if an edge of a tile is a C-curve, that edge must “point” outward or
inward. J-curves are nonstraight curvilinear segments that possess only trivial symmetry.
Like C-curves, J-curves of a tile may be thought of as pointing outward or inward.

If two planar objects are congruent by an orientation preserving isometry, then we will
say that the objects are directly congruent, and if these two objects are congruent but not
directly congruent, they are indirectly congruent. If T is some fixed tile whose edges are
S-curves, C-curves, or J-curves, let T1 and T2 be tiles congruent (directly or indirectly) to
T , and let e1 be an edge of T1 and e2 and edge of T2.

• If e1 and e2 are congruent S-curves, then T1 and T2 may meet along e1 and e2 if e1 and
e2 are directly congruent.

• If e1 and e2 are congruent C-curves, then T1 and T2 may meet along e1 and e2 if e1 and
e2 are oppositely opposed (i.e. e1 is pointing outward on T1 and e2 is pointing inward
on T2, or vice versa).

• If e1 and e2 are congruent J-curves, T1 and T2 may meet along e1 and e2 if e1 and e2
are directly congruent and oppositely opposed.

T1

T2

T1

T2

T1

T2

Figure 6: geometrically enforceable edge matching rules

C-curves are often represented by symmetric bumps and nicks and J-curves by asymmet-
ric bumps and nicks. S-curves cannot be represented by any curve that has inward/outward
orientation with respect to the tile, but they can be represented by directed straight edges
with the rule that two edges may meet when their directions are opposite.

4 Triangles

First, we point out that any equilaterally isotoxal triangle cannot have edges that are C-
curves or J-curves (which can be thought of as symmetric or asymmetric bumps or nicks).
It turns out that any tile, some of whose sides are marked with bumps and nicks, must have
the property that the number of nicks of a particular type must be equal to the number of
bumps of the same type if that tile tessellates the plane [3]. This is a result of the Normality
Lemma [2]. Since an equilateral polygon with an odd number of edges whose edges are
all congruent to a C-curve or a J-curve would necessarily have an imbalance between the
number of bumps and nicks, we can rule out C-curves and J-curves for polygons with an
odd number of sides. Thus, an equilaterally isotoxal triangle must have either three straight
sides or three congruent S-curve sides. If all three sides are straight, it is easily seen that the
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only tiling admitted by the equilateral triangle is 1-isotoxal. Similarly, if all three sides are
directly congruent S-curves, the two tilings admitted (one using all directly congruent copies
of the triangle, the other using all indirectly congruent copies of the triangle) is 1-isotoxal.

Lastly, we consider the equilateral triangle with two sides that are directly congruent
S-curves and a third side that is indirectly congruent to the other two. Any tiling by such a
triangle in which every tile is directly congruent must have at least two transitivity classes
of edges. In Figure 7, we see a 2-isotoxal and a 3-isotoxal tiling by directly congruent copies.

Figure 7: At left is a 2-isotoxal tiling admitted by an equilateral triangle. At right is a
3-isotoxal tiling admitted by the same triangle.

The tilings of Figure 7 show that the equilateral triangle with two sides that are directly
congruent S-curves and a third side that is indirectly congruent to the other two is not
equilaterally k-isotoxal for any k. If we allow for directly and indirectly copies of the prototile
in a tiling, we can produce tilings that have arbitrarily large numbers of transitivity classes
of edges - even infinitely many (Figure 8).

Figure 8: The tiling at left has trivial symmetry group (and so has infinitely many transitivity
classes of edges. At right is a periodic tiling (fundamental region shaded) with a large (but
finite) number of transitivity classes of edges. The dark gray tiles are indirectly congruent
to the white tiles.

5 Pentagons

It is known that there are only two classses of convex equilateral pentagons that tile the
plane [1]. Further, D. Schattschneider reports that the nonconvex equilateral pentagons
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that tile the plane have been classified as well [4]. Thus, pentagons provide some nice base
shapes whose sides might be marked to force k-isohedrality. However, for the same reason
that an equilaterally isotoxal triangle cannot have as its edges C- or J-curves, neither can
any equilaterally isotoxal tile with an odd number of edges.

In Figure 9, is a type of pentagonal tiler whose angle conditions allow for the tile to
be equilateral. An equilateral version of this pentagon that has sides that are all directly
congruent S-curves can be made so that it is equilaterally 4-isotoxal. In Figure 10 we see an
equilaterally 4-isotoxal pentagon and the unique tiling admitted by this tile. That this tile
admits just one tiling with 4 transitivity classes of sides is seen by checking that in any tiling
by this tile, side 0 must meet side 0 (refering to Figure 10), side 2 must meet side 2, side 3
must meet side 3, and side 1 must meet side 4. It is easily checked that any configuration
in which sides meet in ways other than those just specified cannot be extended to a tiling
of the entire plane. With this in mind, that the sides must meet as specified earlier allows
for a unique tiling of the plane that clearly has 4 transitivity classes of edges. Lastly, we
point out if the pentagon is marked with flat sides, the pentagon admits many tilings, some
of which are not periodic. Thus, if the pentagon has flat sides, it is not k-isotoxal for any k.

A B

CD
E

Figure 9: Any convex pentagon with B + C = 180◦ admits a tiling of the plane.
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Figure 10: The equilaterally 4-isotoxal pentagon of the tiling is based on the convex pentagon
at left.

We leave it as an open problem to investigate the remaining equilateral pentagons that
tile the plane to see if other equilaterally k-isotoxal tiles with 1 ≥ k ≥ 5 may be identified.
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[2] B. Grünbaum and G. C. Shephard, Tilings and Patterns, Freeman, New York,
1987.

[3] C. Mann, Heesch Numbers of Edge-marked Polyforms, in preparation.

[4] D. Schattschneider, M. C. Escher: Visions of Symmetry, Abrams, New York,
2004.

8


	Introduction
	Examples of equilaterally 2- and 3-isotoxal tiles
	Matching Rules
	Triangles
	Pentagons

