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ABSTRACT
Lattice knots have been studied in recent years, especially in Z3 and with respect

to how many edges are required to form a knot. Knots formed from cubes have also
been investigated for their ability to tessellate space. In this article, we demonstrate
that there is a relationship between the minimum number of edges required to form a
lattice knot and the minimum number of cubes required to form the same kind of knot.
We further investigate the relationship in the face-centered cubic lattice.

1. Introduction

The cubic lattice is the point set Z3 = {(x, y, z)|x, y, z ∈ Z}. We define steps

in Z3 to be unit segments with endpoints in Z3. A Z3-lattice knot of type K is a
simple closed polygonal cycle of steps in Z3 that forms a knot of type K. For each
knot type K, there is a minimum number of steps required to form a Z3-lattice
knot of type K; we call this number the Z3-minimal step number of knot type K.a

Surprisingly, not much is known about minimal step numbers. In [1], Diao showed
that the trefoil knot has Z3-minimal step number 24, and it is conjectured in [2] that
the figure eight knot has Z3-minimal step number 30. Figure 1 shows a Z3-minimal
cubic lattice trefoil knot formed from 24 steps.

We will also discuss lattice knots in other lattices. Let L be a three-dimensional
lattice. Some care must be taken in defining L-steps; rather than introducing too
much terminology here, let us just state that there is a notion of points in L being
adjacent. L-steps are then just segments whose endpoints are adjacent points of L.
L-lattice knots and L-minimal step numbers of knot type K are defined analogously
to the Z3 case. Even less is known about minimal step numbers if we look at other
lattices; the only work known to the authors is in [3], where it is conjectured that the

aThe terminology for the minimal step number of a knot type varies in the literature; it is some-
times called the lattice number of a knot type, or the minimal edge number of a knot type. We
propose the new term minimal step number to avoid confusion over the term “edge” which appears
in multiple contexts.
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Fig. 1. A minimal trefoil knot in the cubic lattice.

trefoil knot has minimal step number 16 in the face-centered cubic lattice. Figure
2 shows such trefoil made from 16 steps [4].
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Fig. 2. A trefoil knot in the face-centered cubic lattice of step size 16

The main result of this paper concerns the relationship between Z3-lattice knots
and objects we call cube knots. The cubes used to form these cube knots are unit
cubes whose centers lie in the cubic lattice and whose faces are parallel to the
coordinate planes. Let us call such cubes lattice cubes. A cube knot of type K is
then a connected cycle of lattice cubes {C1, C2, . . . , Cn} such that

1. consecutive Ci meet face-to-face,

2. centers of consecutive Ci, when pairwise joined together by steps, form a
Z3-lattice knot of type K (called the core knot), and

3. distinct bars (that is, straight sequences of cubes) intersect if and only if they
are consecutive.
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In essence, a cube knot of type K is defined to be a cycle of cubes that has a Z3-
lattice knot of type K at its core and in which consecutive “bars” of cubes may
only intersect at a common corner cube. Nonconsecutive bars may not intersect at
all. Figure 3 shows a well-formed cube knot.
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Fig. 3. A cube trefoil knot

For each knot type K, there is a minimum number of cubes required to form a
cube knot of type K; let this number be called the minimal cube number for knot
type K. The main result of this paper points out that there is a relationship between
the Z3-minimal step number and the minimal cube number for knot type K, which
is that for any knot type K, the minimal cube number is twice the Z3-minimal step
number.

Cube knots have been studied in recent papers. Adams discovered a way to
form a trefoil knot that tessellates a larger cube with four-fold symmetry [5]. In
particular, Adams posed a question asking about the minimal size cube that may
be decomposed into exactly four intertwined trefoil cube knots. In trying to answer
this question, one wonders how many cubes are required to build a trefoil knot.
Additional work related to cube knots was done in [6].

Later in this paper, other lattices are considered, such as the face-centered cubic
lattice, and associated solids which may be formed into knots, such as the rhombic
dodecahedron. We conclude the paper with some open problems.

2. Definitions

The Z3-minimal step number of a knot type K will be denoted by mK and the
minimal cube number will be denoted by MK .

Definition 1. Let D be a cube knot. For each integer i, consider the cubes of
D whose centers have z-coordinate i. In each of these collections of cubes, there
may be several connected components with volume greater than 1. We call these
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components with volume greater than 1 the zi-components of D. Generically, we’ll
refer to these components as slab components. Similarly we define the xi- and
yi-components.

Intuitively, the zi-components of D are the pieces of D at height i that “mean-
der” in horizontal slabs at height i. The components of volume 1 come from vertical
bars of the cube knot that are just passing through the slab.

3. Main Result

Theorem 1. For any knot type K, the minimal cube number is twice the Z3-
minimal step number. That is, MK = 2 ·mK .
Proof. It is easy to prove that MK ≤ 2 ·mK . Starting with a minimal lattice knot
of type K with length mK , we can scale this knot by a factor of 2 to construct a
cube knot C of type K whose volume is 2 ·mK in the following way. First, in scaling
the lattice knot by a factor of 2, we introduce mK additional vertices between the
existing vertices. To construct the corresponding cube knot, we place lattice cubes
with their centers at the vertices of the scaled lattice knot. The scaled lattice knot
will then be at the core of the cube knot. The cube knot formed in the process
is well formed, since distinct and nonconsecutive straight sequences of steps in the
original lattice knot must have been separated from each other by at least one step,
and hence nonconsecutive bars in the cube knot do not intersect. As an example,
it is known that mK = 24 if K is the trefoil knot [1]. In Figure 4 we see a minimal
trefoil knot in the cubic lattice along with its scaled-up cube knot that consists of
48 cubes.

Since we can always form a cube knot C of type K of volume 2 ·mK in this way,
we know then that MK ≤ 2 ·mK . In general, we don’t know at this point that C is
of minimal volume for knot type K; but in fact, as we will prove next, C is always
of minimal volume.

To prove that MK ≥ 2 ·mK , let D be an arbitrary cube knot of type K. An
outline of our proof is a follows:

1. Arrange D, without changing its knot type or increasing its volume, in such
a way that the end cubes of every slab component (that is, the corner cubes)
have centers on the even integer lattice.

2. Scale the core lattice knot of this rearranged version of D by 1/2 to get a
lattice knot whose length is less than or equal to 1/2 of the volume of D.

3. Observe that if D is of volume less than 2 ·mK , then we would get a lattice
knot of length less than mK , which is impossible.

4. Therefore, if any cube knot D can be arranged as described in step 1, we
would then know that MK ≥ 2 ·mK , which would complete our proof.

It remains to be shown that any cube knot D can be arranged in the aforementioned
manner.
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Fig. 4. At left is a minimal trefoil knot in the cubic lattice. At right is the cube knot whose core
is the same trefoil knot scaled by 2.

Our first task is to describe certain moves that one can perform on the cube
knot without altering the knot type or creating a cube knot that is not well formed.
To do this, let us focus for a moment on individual zi-components of D. There are
three basic types of zi-components with regard to the ends of these components:

Type I: both ends of the component connect upward to the other parts of the
knot.

Type II: both ends of the component connect downward to the other parts of the
knot.

Type III: one end of the component connects upward and the other connects
downward.

In the figures that follow, we describe moves that will be performed on slab
components for each of these types and make some observations about them. We
describe only upward moves below; the downward moves are similar.
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Fig. 5. A Type I component moved upward. Note that this move decreases the volume of a cube
knot. Moving a Type I component downward would increase the volume.
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Fig. 6. A Type II component moved upward. Note that this move increases the volume of a cube
knot, and a similar downward movement would decrease the volume.
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Fig. 7. A Type III component moved upward. Note that this move does not change the volume
of a cube knot and neither does a downward movement.
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In Figure 8, we give an example that illustrates how the previously described
moves are used to arrange a cube knot, without changing its knot type or increasing
its volume, so that its corner cubes’ centers are on the even integer lattice.
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Fig. 8. A sequence of moves applied to a cube knot. From upper left, clockwise: A cube knot, the
knot with moves applied parallel to the z-axis, the knot with moves applied parallel to the x-axis,
and the knot with moves applied parallel to the y-axis.

Now let us make various observations about these local slab component moves.
For simplicity, let S1 be a z1-component. Moving S1 upward can result in a new
z2-component or it may join with an existing z2-component to form an even longer
z2-component. Either way, call this new z2-component S2. Observe that in the
former case, S1 does not intersect or abut any existing z2-component, for if S1

abutted with another z2-component S′, then there would exist a cube in S1 and a
cube in S′ that intersect along their boundaries, meaning the cube knot was not well
formed in the first place. Notice that there can be abutting that occurs between a
new z2-component and an existing z3-component. To resolve this we move all odd
slab components upward simultaneously. This will ensure in the above situation that
there are no nontrivial z3-components after shifting upward and thus the abutting
problem cannot occur. At this point we have successfully arranged the cube knot
without changing the knot type so that the end cubes of every slab component
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have centers where all z-coordinates are even and other coordinates are unchanged.
Make note that we could make this arrangement with downward movements too.
Now it is time to see that we can make this arrangement without increasing the
volume of the cube knot.

Moving a slab component of type I upward decreases the volume of the cube
knot by 2, and moving it down increases the volume by 2. Similarly for type II
slab components. Moving a slab component of type III either upward or downward
does not change the volume of the cube knot. Let NI denote the number of odd
slab components of type I and NII the number of odd slab components of type
II. Moving every odd slab component up one unit results in a volume change of
−2NI + 2NII while moving every odd slab component down one unit results in a
volume change of 2NI − 2NII . Either an upward or downward move will result
in a volume change less than or equal to zero. Thus we can successfully arrange
the cube knot without changing the knot type so that the end cubes of every slab
component have centers where all z-coordinates are even and other coordinates are
unchanged and without increasing the volume of the cube knot as desired in our
aforementioned goal.

If this process is repeated for the other two coordinate directions, the result is
a cube knot D′ that satisfies the following:

• The knot type of D′ is the same as the knot type of D, since at no step did the
knot self-intersect.
• The volume of D′ is less than or equal to the volume of the original cube knot
D.
• The points at the centers of the cubes at the ends of all slab components are on
the even integer lattice.

This then completes the proof. ¤

4. Generalizations and Open Problems

It is natural to wonder if analogous results to our main theorem hold for other
lattices. The generalized version of our problem would be based on knots in general
lattices and the corresponding knots that can be formed from the Voronöı cells of
the lattice [7]. A point lattice generated by a linearly independent set of vectors
{v1, v2, v3} ⊂ R3 is the set of points L = {Σaivi | ai ∈ Z}. Then, given a lattice L,
we define the Voronöı cell of a point p ∈ L to be the set of points of R3 that lie at
least as close to p as to any other points of L; that is, the Voronöı cell of p ∈ L is

V (p) = {x ∈ Rn | |p− x| ≤ |q − x| for all q ∈ L} .

For each lattice, the corresponding Voronöı cells are all congruent and tessellate
R3 meeting face-to-face and vertex-to-vertex. For example, the cubic lattice Z3

has unit cubes as Voronöı cells, and these cubes tessellate R3. Another example is
the face-centered cubic lattice, which is generated by the vectors (1, 0, 0), (0, 1, 0),
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and
(

1
2 , 1

2 , 1√
2

)
. The Voronöı cell of this lattice is the rhombic dodecahedron, and

again, these solids tessellate R3. As it turns out, Fedorov [8] gave a classification
of all possible Voronöı cells, and there are only five combinatorial types (the so-
called parallelohedra); they are the cube, hexagonal prism, rhombic dodecahedron,
hexarhombic dodecahedron, and truncated octahedron.
Open Question 1. For a given lattice L and nontrivial knot type K, let mK be
the minimum number of L-steps required to form a knot of type K, and let MK be
the minimum number of Voronöı cells of L needed to form a knot of the same type.
For every lattice L, does there exist a real number CL such that MK = CL ·mK?

The authors have experimented with forming knots made from rhombic dodeca-
hedra. We conjecture that a trefoil knot formed from rhombic dodecahedra requires
a minimum of 40 cells (Figure 9), and a figure eight knot requires a minimum of 50
rhombic dodecahedra (Figure 10).
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Fig. 9. A well-formed trefoil knot formed from 40 rhombic dodecahedra.

The core knots of these rhombic dodecahedra are not minimal when scaled by
1/2, for examples of trefoil lattice knots in the face-centered of step size 16 have been
found (the conjectured minimum [3]) and examples of figure eight lattice knots of
step size 20 have been found (we conjecture this is minimal as well). Thus it seems
that CL 6= 2 in the face centered cubic lattice. To illustrate this, we have formed
a trefoil made from 16 steps in the face-centered cubic lattice, scaled this knot
by a factor of 2, and tried to use this scaled knot as the core knot of a rhombic
dodecahedron knot. This did not yield a well-formed knot, as it self-intersected at
vertices of nonconsecutive bars (Figure 11).

Based on these examples, we offer the following conjecture:
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Fig. 10. A well-formed figure eight knot formed from 50 rhombic dodecahedra.
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Fig. 11. A trefoil knot formed from 32 rhombic dodecahedra that is not well formed. The knot
self-intersects at vertices.
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Conjecture 1. For the face centered cubic lattice, MK = d2.5 ·mKe.
If we consider lattice knots alone, not much is known, even in Z3, much less

knots in other lattices. For example the following problems are open.
Open Question 2. What is the minimal step number of the figure eight knot in
Z3 and in the face-centered cubic lattice?

It is conjectured that the Z3-minimal step number of the figure eight knot is 30
[2]. We conjecture that the minimal step number is 20 in the face-centered cubic
lattice.
Open Question 3. For lattices corresponding to the hexagonal prism, rhombic
dodecahedron, hexarhombic dodecahedron, and truncated octahedron, what is the
minimal step number of the trefoil knot?
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